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Abstract
We deal with polynomial vector fieldsX of the form

∑d
k=1 Pk(x1, . . . , xd)∂/∂xk

with d � 2. Let mk be the degree of Pk . We call (m1, . . . , md) the degree
of X . We provide the best upper bounds for the polynomial vector field X in
the function of its degree (m1, . . . , md) of (1) the maximal number of invariant
hyperplanes, (2) the maximal number of parallel invariant hyperplanes, and (3)
the maximal number of invariant hyperplanes that pass through a single point.
Moreover, if mi = m, i = 1, . . . , d, we show that these best upper bounds are
reached taking into account the multiplicity of the invariant hyperplanes.

PACS numbers: 02.40.Sf, 02.30.Hq, 02.60.Nm
Mathematics Subject Classification: 58F14, 58F22, 34C05

1. Introduction and statement of the results

As usual we denote by C[x1, . . . , xd ] the ring of the polynomials in the variables x1, . . . , xd

with coefficients in C. By definition a polynomial differential system in C
d is a system of the

form
dxi

dt
= Pi(x1, . . . , xd), i = 1, . . . , d, (1)

where Pi ∈ C[x1, . . . , xd ]. If mi is the degree of Pi , then we say that m = (m1, . . . , md) is
the degree of the polynomial system. Without loss of generality in the rest of the paper we
assume that m1 � · · · � md .

We denote by

X =
d∑

i=1

Pi(x1, . . . , xd)
∂

∂xi

(2)

the polynomial vector field associated with system (1) of degree m.

1751-8113/07/298385+07$30.00 © 2007 IOP Publishing Ltd Printed in the UK 8385

http://dx.doi.org/10.1088/1751-8113/40/29/013
mailto:jllibre@mat.uab.cat
mailto:medrado@mat.ufg.br
http://stacks.iop.org/JPhysA/40/8385


8386 J Llibre and J C Medrado

An invariant algebraic variety for system (1) or for the vector field (2) is an algebraic
variety f (x1, . . . , xd) = 0 with f ∈ C[x1, . . . , xd ] such that for some polynomial K ∈
C[x1, . . . , xd ] we have Xf = ∇f · X = Kf . The polynomial K is called the cofactor of
the invariant algebraic variety f = 0. We remark that if the polynomial system has degree
m = (m1, . . . , md), with m1 � m2 � · · · � md , then any cofactor has at most degree m1 − 1.

FromXf = Kf it follows that if a solution curve of system (1) has a point on the algebraic
variety f = 0, then the whole solution curve is contained in f = 0. This is the reason of
calling f = 0 invariant, because it is invariant by the flow of the system. The converse is true,
i.e. assume that we have an algebraic variety f = 0 such that if a solution curve of system
(1) has a point on it, then the whole solution curve is contained in f = 0. Without loss of
generality we can assume that the polynomial f is irreducible in C[x1, . . . , xd ]. Then since
Xf is zero always that f = 0 by Hilbert’s Nullstellensatz it follows that the polynomial f

divides the polynomial Xf , the quotient is the cofactor polynomial K.
If the degree of f is 1 then we say that the algebraic variety f = 0 is an invariant

hyperplane.
The knowledge of the invariant algebraic varieties of a differential system provides

important information for understanding the dynamics of the system. Thus, if the number of
invariant algebraic varieties is sufficiently large then there exists a first integral of the system
that can be computed explicitly, see for instance [5]. On the other hand, the invariant algebraic
varieties allow us to control better the interesting regions from the dynamical point of view
of the system; as an example see [4] where they are used to provide a bounded region where
the Lorenz attractor lives. Of course, the simplest use of invariant algebraic varieties is for
separating the initial phase space of the system into invariant pieces.

Now we shall introduce one of the best tools in order to look for invariant algebraic
varieties. Let X be a polynomial vector field on C

d and let W be a finitely generated vector
subspace of C[x1, . . . , xd ]. The extactic algebraic variety of X associated with W is

EW(X ) = det




v1 v2 · · · vl

X (v1) X (v2) · · · X (vl)

...
... · · · ...

X l−1(v1) X l−1(v2) · · · X l−1(vl)


 = 0, (3)

where {v1, . . . , vl} is a basis of W, l = dim(W) is the dimension of W and X j (vi) =
X j−1(X (vi)). It is known due to the properties of the determinant and of the derivation that
the definition of extactic algebraic variety is independent of the chosen basis of W .

In fact we learn this definition from the paper [8], but this notion goes back to the work
of Lagutinskii at the beginning of the twentieth century; see the references quoted in [3]. We
have used the definition of EW(X ) in different papers (see [2, 6]).

The notion of extactic algebraic variety EW(X ) is important in this paper for two reasons.
First it allows us to detect when an algebraic variety f = 0 with f ∈ W is invariant by the
polynomial vector field X ; see the next result proved in [2, 6] for polynomial vector fields in
C

2 and R
3, respectively, but its extension to C

d is clear. In any case, since its proof is short
and easy, for completeness we will present it at the beginning of section 2. The second reason
why EW(X ) is important in this paper is because it allows us to define and compute easily the
multiplicity of an invariant algebraic variety, and in particular of an invariant hyperplane.

Proposition 1. Let X be a polynomial vector field in C
d and let W be a finitely generated

vector subspace of C[x1, . . . , xd ] with dim(W) > 1. Then every algebraic invariant variety
f = 0 for the vector field X , with f ∈ W , is a factor of EW(X ).
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By proposition 1, f = 0 is an invariant hyperplane of the polynomial vector field X if
the polynomial f is a factor of EW(X ) with W generated by {1, x1, . . . , xd}. From [2] the
invariant hyperplane f = 0 has multiplicity k if k is the greatest positive integer such that f k

divides the polynomial EW(X ) with W generated by {1, x1, . . . , xd}. Again from [2] if the
invariant hyperplane f = 0 of X has multiplicity k, then there is a family of vector fields Xε

with the same degree, then X such that X0 = X and for all ε > 0 sufficiently small Xε has k
different hyperplanes tending to the hyperplane f = 0 when ε → 0.

When we study the maximal number of invariant hyperplanes through a point that a
polynomial vector field X can have, without loss of generality doing a translation of this
point we can assume that this point is the origin. Then the multiplicity k of an invariant
hyperplane through the origin is defined as the greatest positive integer k such that f k divides
the polynomial EW(X ) with W generated by {x1, . . . , xd}.

Of course, in dimension 2 an invariant hyperplane is an invariant straight line. The
number of invariant straight lines for polynomial vector fields in R

2 has been studied for
several authors, see for instance [10]. Additionally, it is known that for polynomial vector
fields of degree (2, 2) the maximal number of invariant straight lines is 5. Recently Zhang
Xiang [11] and Sokulski [9] proved that the maximal number of real invariant straight lines
for polynomial vector fields in R

2 of degrees (3, 3) and (4, 4) are 8 and 9, respectively. As
far as we know, the main results about this number for polynomial vector fields in R

2 are
summarized in the following theorem proved in [1].

Theorem 2. Assume that a polynomial vector field X in R
2 of degree m = (m,m) has finitely

many invariant straight lines. Then the following statements hold.

(a) The number of invariant straight lines of X is at most 3m − 1.
(b) The number of parallel invariant straight lines of X is at most m.
(c) The number of different invariant straight lines of X through a single point is at most

m + 1.

The goal of this paper is to improve theorem 2 and extend it to polynomial vector fields
in C

d . Thus our main two results are the following ones.

Theorem 3. Assume that a polynomial vector field X in C
d with d � 2 of degree

m = (m1, . . . , md) with m1 � · · · � md has finitely many invariant hyperplanes. Then
the following statements hold.

(a) The number of invariant hyperplanes of X taking into account its multiplicity is at most(
d∑

k=1

mk

)
+

(
d

2

)
(m1 − 1). (4)

(b) The number of parallel invariant hyperplanes of X taking into account its multiplicity is
at most m1.

(c) The number of different invariant hyperplanes of X through a single point taking into
account its multiplicity is at most(

d−1∑
k=1

mk

)
+

(
d − 1

2

)
(m1 − 1) + 1. (5)

Theorem 3 is proved in section 2.
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Clearly there are polynomial vector fields X with infinitely many invariant hyperplanes.
It is sufficient to take in system (1) the polynomial Pd(x1, . . . , xd) = 0.

Theorem 4. Assume that a polynomial vector field X in C
d with d � 2 of degree

m = (m, . . . , m) has finitely many invariant hyperplanes. Then the following statements
hold.

(a) The number of invariant hyperplanes of X taking into account its multiplicity is at most

dm +

(
d

2

)
(m − 1),

and this upper bound is reached for some X .
(b) The number of parallel invariant hyperplanes of X taking into account its multiplicity is

at most m, and this upper bound is reached for some X .
(c) The number of different invariant hyperplanes of X through a single point taking into

account its multiplicity is at most

(d − 1)m +

(
d − 1

2

)
(m − 1) + 1,

and this upper bound is reached for some X .

Theorem 4 is proved in section 3.
Note that showing that the upper bounds of theorem 4 are the best possible, we are also

showing that when mi = m, i = 1, . . . , d, then the bounds in theorem 3 are exact.
Note that theorem 2 is now a particular case of theorem 4 when d = 2. Of course, the

binomial number
(

d−1
2

)
when d = 2 is zero by definition.

We remark that we have examples of real polynomial vector fields of degree (4, 4) with
11 complex invariant straight lines, but that only with real invariant straight lines we cannot
reach more than 9 of such lines according to the results of [9, 11]. More information about the
number of real invariant straight lines for polynomial vector fields in R

2 can be found in [1].
Some preliminary results about the number of invariant hyperplanes of polynomial vector

fields in R
d can be found in [7], and in C

d in [12]. But the upper bounds founded in these
papers are not the best ones with the exception of the one corresponding to the statement (a) of
theorem 3. But also in that case they did not take into account the multiplicity of the invariant
hyperplanes and they do not prove that the bound is the best one.

2. Proof of theorem 3

First we shall prove proposition 1 and after theorem 3.

Proof of proposition 1. Suppose that we are in the assumptions of proposition 1. Then let
f = 0 be an invariant algebraic variety of X such that f ∈ W . As was observed, the choice of
the basis of W plays no role in the definition of extactic curve, therefore we can take v1 = f

in (3). Since

X (f ) = Kf f,

X 2(f ) = X (Kf f ) = (
X (Kf ) + K2

f

)
f,

...
...

...

X k(f ) = X (X k−1(f )) = · · · = (polynomial)f,

f is a factor of the polynomial EW(X ). �
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Proof of theorem 3. Suppose that we are in the assumptions of theorem 3. We define W as
the C-vector subspace of C[x1, . . . , xd ] generated by 1, x1, . . . , xd . Then if f ∈ W we have
that f = 0 is a hyperplane if f is not a constant.

By proposition 1 if f = 0 is a hyperplane of X , then f is a factor of

EW(X ) = det




1 x1 x2 · · · xd

0 X (x1) X (x2) · · · X (xd)

...
...

... · · · ...

0 X d(x1) X d(x2) · · · X d(xd)


 . (6)

Note that for k = 1, . . . , d, the maximum degrees of the polynomials X (xk), X 2(xk),
X 3(xk), . . . ,X d(xk) are mk , m1 − 1 + mk , 2(m1 − 1) + mk, . . . , (d − 1)(m1 − 1) + mk ,
respectively. Taking into account that m1 � · · · � md and the definition of the determinant,
it follows that the maximum degree of the polynomial EW(X ) is

[(d − 1)(m1 − 1) + m1] + [(d − 2)(m1 − 1) + m2]

+ [(d − 3)(m1 − 1) + m3] + · · · + [m1 − 1 + md−1] + md,

i.e. the degree of EW(X ) is given by expression (4). Note that the previous degree corresponds
to the degree of the polynomial X d(x1)X d−1(x2) · · ·X 2(xd−1)X (xd), which is one of the
polynomials of determinant (6) corresponding to a permutation of d elements with a maximal
degree.

Since the polynomial EW(X ) can have at most as many factors of the form a0 + a1x1 +
· · · + adxd as its degree, by proposition 1 it follows statement (a) of theorem 3.

If we have a set of parallel hyperplanes in C
d doing a convenient linear change of

coordinates, we can assume that all the equations of these hyperplanes are of the form
x1 − constant = 0. In other words all these hyperplanes can be written in the form f = 0 with
f ∈ W , where W is the C-vector subspace of C[x1, . . . , xd ] generated by 1 and x1. Therefore,
by proposition 1 if f = 0 is one of these hyperplanes of X , then f is a factor of

EW(X ) = det

(
1 x1

0 X (x1)

)
.

Since the degree of X (x1) = P1(x1, . . . , xd) is m1, statement (b) of theorem 3 is proved. �

Doing a translation of the coordinates (if necessary) we can assume that the single point—
through it passes a set of hyperplanes—is located at the origin of coordinates. So all these
hyperplanes are of the form a1x1 + · · · +adxd = 0. That is all these hyperplanes can be written
in the form f = 0 with f ∈ W , where W is the C-vector subspace of C[x1, . . . , xd ] generated
by x1, . . . , xd . Therefore, by proposition 1 if f = 0 is one of these hyperplanes of X , then f

must be a factor of

EW(X ) = det




x1 x2 · · · xd

X (x1) X (x2) · · · X (xd)

...
... · · · ...

X d−1(x1) X d−1(x2) · · · X d−1(xd)


 . (7)

Note that for k = 1, . . . , d the degree of the polynomials xk , X (xk), X 2(xk),
X 3(xk), . . . ,X d−1(xk) are 1, mk , m1 − 1 + mk , 2(m1 − 1) + mk, . . . , (d − 2)(m1 − 1) + mk ,
respectively. Taking into account that m1 � · · · � md and the definition of the determinant,
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it follows that the degree of the polynomial EW(X ) is

[(d − 2)(m1 − 1) + m1] + [(d − 3)(m1 − 1) + m2]

+ [(d − 4)(m1 − 1) + m3] + · · · + [m1 − 1 + md−2] + md−1 + 1,

i.e. the degree of EW(X ) is given by expression (5). Note that the previous degree corresponds
to the degree of the polynomial X d−1(x1)X d−2(x2) · · ·X (xd−1)xd , which is one of the
polynomials of determinant (7) corresponding to a permutation of d elements with a maximal
degree.

Again since the polynomial EW(X ) can have at most as many factors of the form
a1x1 + · · · + adxd as its degree, by proposition 1 it follows statement (c) of theorem 3.

3. Proof of theorem 4

We assume that we are under the hypotheses of theorem 4. The first parts of statements (a), (b)
and (c) of theorem 4 follow directly from theorem 3 putting m1 = · · · = md = m. Therefore,
we must prove for these three statements that the corresponding upper bounds are reached for
convenient polynomial vector fields.

We consider the polynomial differential system

dxi

dt
= xm

i , i = 1, . . . , d. (8)

For this system using induction with respect to d it follows that polynomial (6) becomes

a(m)

(
d∏

k=1

xm
k

) 
 ∏

1�i<j�d

(
xm−1

j − xm−1
i

) ,

where a(m) is a constant which only depends on m.
Clearly system (8) has the hyperplane xk = 0 invariant with multiplicity m for

k = 1, . . . , d. Moreover, it is easy to check that the algebraic variety xm−1
j − xm−1

i = 0

is invariant by system (8) with cofactor (m − 1)
(
xm−1

i + xm−1
j

)
for all i and j such that

1 � i < j � d. Note that the homogeneous polynomial xm−1
j − xm−1

i factorizes as product of
m − 1 linear homogenous polynomials in C[xi, xj ]. Now we need the following well-known
result, see for instance [5].

Proposition 5. We suppose that f ∈ C[x1, . . . , xd ] and let f = f
n1
1 · · · f nr

r be its factorization
in irreducible factors over C[x1, . . . , xd ]. Then, for a polynomial system (1), f = 0 is an
invariant algebraic variety with cofactor Kf if and only if fi = 0 is an invariant algebraic
variety for each i = 1, . . . , r with cofactor Kfi

. Moreover, Kf = n1Kf1 + · · · + nrKfr
.

By proposition 5 every linear factor of xm−1
i − xm−1

j in C[x1, . . . , xd ] is an invariant
hyperplane with multiplicity 1. In short, the total number of invariant hyperplanes of system
(8) taking into account their multiplicities is

dm +

(
d

2

)
(m − 1).

Hence the second part of statement (a) of theorem 4 is proved.
System (1) with P1(x1, . . . , xd) = ∏m

k=1(x1 − k) has exactly m parallel invariant
hyperplanes, namely x1 = k for k = 1, . . . , m. This completes the proof of the second
part of statement (b) of theorem 4. In fact for proving this statement we also can use system
(8), because for that system x1 = 0 is a parallel hyperplane to itself with multiplicity m.
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Again we consider system (8). For this system using induction with respect to d it follows
that polynomial (7) becomes

b(m)

(
d∏

k=1

xk

) 
 ∏

1�i<j�d

(
xm−1

j − xm−1
i

) ,

where b(m) is a constant which only depends on m.
This system has through the origin the following invariant hyperplanes: xk for k =

1, . . . , d with multiplicity 1, and the invariant hyperplanes defined by the linear factors of
xm−1

i − xm−1
j for all i and j such that 1 � i < j � d with multiplicity 1. In short, the total

number of invariant hyperplanes through the origin is

d +

(
d

2

)
(m − 1) = (d − 1)m +

(
d − 1

2

)
(m − 1) + 1,

i.e. this number is the maximal number of possible invariant hyperplanes through the origin
taking into account their multiplicity. Therefore we have shown the second part of statement
(c) of theorem 4.
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Differential Equations vol 1, ed A Cañada, P Drabek and A Fonda (Amsterdam: Elsevier) pp 437–533

[6] Llibre J and Pessoa C 2006 Invariant circles for homogeneous polynomial vector fields on the 2-dimensional
sphere Rend. Circ. Mat. Palermo 55 63–81

[7] Llibre J and Rodrı́guez G 2000 Invariant hyperplanes and Darboux integrability for d–dimensional polynomial
differential systems Bull. Sci. Math. 124 599–619

[8] Pereira J V 2001 Vector fields, invariant varieties and linear systems Ann. Inst. Fourier (Grenoble) 51 1385–405
[9] Sokulski J 1996 On the number of invariant lines of polynomial vector fields Nonlinearity 9 479–85

[10] Guangjian Suo and Jifang Sun 1987 The n-degree differential system with (n − 1)(n + 2)/2 straight line
solutions has no limit cycles Proc. Ordinary Differential Equations and Control Theory, Wuhan pp 216–20
(in Chinese)

[11] Zhang Xiang 1993 Number of integral lines of polynomial systems of degree three and four J. Nanjing Univ.
Math. Biquartely 10 209–12

[12] Zhang Xiang 2002 Invariant hyperplanes and Darboux integrability of polynomial vector fields J. Phys. A:
Math. Gen. 35 9931–41

http://dx.doi.org/10.1016/S0375-9601(97)00077-7
http://dx.doi.org/10.1016/S0007-4497(00)01061-7
http://dx.doi.org/10.1088/0951-7715/9/2/011

	1. Introduction and statement of the results
	2. Proof of theorem 3
	3. Proof of theorem 4
	Acknowledgments
	References

